Post

Gramellini, la matematica e la memoria

Immagine
Nella rubrica del Corriere della Sera intitolata "Il caffè", Massimo Gramellini ci dispensa ogni giorno una pillola di saggezza delle sue. Spesso le riflessioni gramelliniane sono argute e azzeccate, ma talvolta stonano un poco.
Nella tazzina di oggi, intitolata "Maturità alla memoria", il noto giornalista affronta il tema della verifica scritta di matematica prevista come seconda prova dell'esame di stato del liceo scientifico. La notizia da cui Gramellini prende le mosse è descritta in un altro articolo del Corriere: un gruppo di studenti lancia una petizione sul sito Change.org, per chiedere al Ministero dell'Istruzione l'abolizione del divieto di utilizzare formulari durante la prova di matematica, in analogia con quanto avviene durante i compiti di italiano, in cui è consentito l'uso di dizionari.

Ecco un passaggio della petizione:
"Ci sembra più che anacronistica l’assenza di un formulario scientifico nell’elenco degli strumenti utilizzabi…

Gli enigmi di Coelum: Il primo della classe

Immagine
Tornano gli enigmi di Coelum: il protagonista di questa puntata è uno dei più grandi matematici della storia: Carl Friedrich Gauss (1777-1855). Nato da una famiglia di umile estrazione sociale, dimostrò fin dalla più tenera età la sua straordinaria propensione per la matematica e per le scienze in genere. A scuola, raccontano le cronache, si annoiava perché sapeva già tutto, avendo imparato da solo formule e regole matematiche, e non di rado arrivava a correggere il maestro.
È famoso l’aneddoto secondo il quale, all’età di nove anni, riuscì a risolvere in pochi secondi un problema che il maestro aveva assegnato alla classe allo scopo di tenere occupati i ragazzi per buona parte dell’ora di lezione. L’esercizio consisteva nel sommare tutti i numeri interi da 1 a 100. Probabilmente la maggior parte delle persone, di fronte a questo compito, non troverebbe niente di meglio da fare che eseguire pazientemente tutte le 99 addizioni, una dopo l’altra, arrivando infine al risultato richiesto…

I sistemi di Lindenmayer e la successione di Thue-Morse

Immagine
Per definire una sequenza numerica molto spesso si specificano i primi elementi della sequenza e si fornisce una regola per generare gli infiniti elementi successivi. Per esempio, la celeberrima successione di Fibonacci si costruisce partendo dagli elementi 0 e 1, e rispettando la regola secondo la quale ogni termine successivo è la somma dei due che lo precedono.
Ora, proviamo a costruire una sequenza diversa, formata esclusivamente da zeri e uni. Il suo primo elemento è uno zero. La regola da rispettare è la seguente: ogni elemento genera il suo successore attraverso le sostituzioni 0 → 01 e 1 → 10. Il secondo termine della sequenza è quindi 01. Il terzo è 0110. Il quarto 01101001. E così via.

Il sistema di costruzione della sequenza rientra nella famiglia dei cosiddetti "L-systems", o sistemi di Lindenmayer. Questa famiglia di sistemi, a sua volta, fa parte del più ampio mondo dei "sistemi di riscrittura", nei quali, genericamente, vengono fissate alcune regole…

Buon 2017!

Immagine
Con il post precedente questo blog ha festeggiato i suoi primi 250 post pubblicati.
Era il primo gennaio del 2011 quando iniziai, praticamente per gioco, a scrivere cose su queste pagine. Sono passati sei anni, e di acqua sotto i ponti ne è passata molta. 2011, cioè il primo anno di Mr. Palomar, era un numero primo, cioè divisibile soltanto per se stesso e per 1.
Dopo sei anni si ripropone questo fatto, perché anche 2017 è un numero primo.
Per la precisione, si tratta di un numero primo di Friedlander-Iwaniec, cioè della forma
Non ci credete? Prendete a = 44 e b = 3. Il precedente numero primo con questa proprietà è 1777 (a = 39, b = 4), che è l'anno della nascita di Gauss.
2017 fa anche parte di una terna pitagorica, essendo l'ipotenusa di un triangolo rettangolo i cui cateti sono 792 e 1855.
Sicuramente ci saranno altre proprietà del 2017, ma mi fermo qui, non prima di aver augurato un felice nuovo anno a tutti gli amici di Mr. Palomar.
Buon 2017 a tutti!

Gli enigmi di Coelum: La Coppa dei Mondi

Immagine
La nuova puntata degli enigmi di Coelum verte su un tema che ho già trattato non soltanto nel mio libro "La matematica nel pallone", ma anche in un trittico di post pubblicato agli albori di questo blog. Ecco i link a quei tre antichi articoli:
Parte 1
Parte 2
Parte 3

Ogni anno, intorno al mese di luglio, viene stabilito il calendario del campionato di calcio di Serie A.
Forse molti di voi si saranno a volte chiesti come si svolge tale procedura. Si tratta di una normale estrazione, come quando vengono sorteggiati i numeri del lotto, o di un complicato calcolo effettuato da un supercomputer? Sicuramente definirlo sorteggio sarebbe riduttivo e semplicistico. Come spiegato nell’articolo di giugno, stabilire il calendario di un girone all’italiana, cioè di un torneo in cui ogni squadra disputa un incontro con ciascuna delle altre partecipanti, non è un’operazione banale, a meno che il numero delle formazioni non sia molto esiguo.
Johann Berger, maestro di scacchi austri…

I Premi Turing: Michael Rabin e Dana Scott

Immagine
La serie dedicata agli informatici che hanno vinto il Premio Turing prosegue con una lentezza geologica: perdonatemi. Ma, come sa bene chi li studia, i fenomeni geologici procedono con inesorabile costanza: si va adagio, ma non ci si ferma. Nel 1959, Michael Rabin e Dana Scott scrissero un articolo intitolato “Finite Automata and Their Decision Problem”, con il quale nasceva un nuovo settore dell’informatica teorica: lo studio degli automi non deterministici. Un automa non deterministico è una variante, o meglio una generalizzazione, del classico concetto di automa a stati finiti (deterministico). Un automa a stati finiti (deterministico) è un’astrazione con la quale è possibile descrivere il comportamento di molti sistemi reali. Più nello specifico, esso è costituito da:
- un insieme finito I dei possibili input (o ingressi) del sistema;
- un insieme finito O dei possibili output (o uscite) del sistema;
- un insieme finito S dei possibili stati del sistema;
- una "funzion…