Mr. Palomar ha l'abitudine di registrare le sue spese quotidiane su un quaderno a quadretti, suddividendole per settimana e per categoria di spesa.
Un pomeriggio Mr. Wilson va a trovare l'amico e nota il quaderno sul tavolo della cucina.
- Non ti facevo così preciso e minuzioso!
- E' una vecchia abitudine. Non so se serva veramente riempire queste pagine di conti, ma mi dà l'impressione di tenere le mie finanze sotto controllo.
- Vedo che registri tutto, fino all'ultimo centesimo.
- Già. Un giorno ho provato a registrare le spese arrotondandole all'euro, ma mi sono imbattuto in un problema che non sono riuscito a risolvere.
- Posso intuire. Ma sentiamo, che tipo di problema hai avuto?
- Guarda questa tabella. Sono le spese del mese di gennaio, suddivise in 5 categorie e riportate con precisione al centesimo.
- Bene, fin qui mi sembra tutto a posto, o sbaglio?
- Non sbagli. Ma guarda cosa succede in questa tabella. L'ho ricavata dalla precedente arrotondando ogni importo parziale all'euro, e calcolando i totali a partire da questi nuovi importi arrotondati.
Mr. Wilson osserva la tabella.
- Come prevedevo. Alcuni totali sono diversi da prima, e soprattutto sono diversi dal risultato che si sarebbe ottenuto arrotondando anche i totali con lo stesso criterio degli importi parziali.
- Esatto, è proprio questo il problema. I totali incriminati sono quelli che ho segnato in rosso. Ad esempio il totale delle spese della seconda settimana è diventata di 228 euro, mentre arrotondando il totale reale 227,1 si sarebbe dovuto ottenere 227.
- E' ovvio che questo accada: ad esempio se in una riga o in una colonna c'è una maggioranza di importi sopra la soglia del mezzo euro, o viceversa sotto quella soglia.
- Proprio così. E guarda il totale complessivo. E' sballato di quasi 2 euro e mezzo.
- Hai provato a vedere cosa succede se oltre agli importi parziali si arrotondano anche i totali?
- Sì, ho provato. Ed è venuta fuori questa tabella.
- E cos'hai notato?
- Apparentemente sembra risolvere il problema: peccato che stavolta i totali non siano sempre ottenuti come somma degli importi parziali. Ad esempio 90 + 87 + 7 + 44 non fa 227, ma 228.
- Risolvere il problema che hai osservato non è cosa facile. Anzi, è in generale impossibile se ci vincola ad arrotondare gli importi nel modo tradizionale.
- Cosa intendi per "tradizionale"?
- Intendo dire che di solito una somma viene arrotondata per eccesso se eguaglia o supera la soglia dei 50 centesimi, e per difetto se rimane sotto quel limite.
- Certo, mi sembra una scelta ragionevole.
- Ma così facendo ti imbatti sicuramente nel problema che hai notato, e non c'è rimedio.
- Cos'altro posso fare?
- Se accetti che un importo venga arrotondato per eccesso o per difetto indipendentemente dal livello dei centesimi di euro, allora il problema può essere risolto.
- E come?
- Utilizzando particolari algoritmi euristici studiati appositamente per escogitare una combinazione ottimale di arrotondamenti sulle diverse celle della tabella, con l'obiettivo di mantenere corrette le somme sulle righe e sulle colonne. Il problema è noto in letteratura come "problema dell'arrotondamento controllato" (in inglese "controlled rounding problem" o CRP).
- Interessante. Ma mi vuoi dire che altre persone oltre a me si sono imbattute nel problema di arrotondare somme di denaro?
- Sì, certo. Ma la cosa non riguarda soltanto valori economici. Il problema nasce storicamente negli istituti di statistica, soprattutto per esigenze legati alla privacy.
- Privacy?
- Gli istituti di statistica devono elaborare e pubblicare grandi tabelle di dati relativi alle caratteristiche della popolazione. Spesso, però, per evitare che certe informazioni possano violare la privacy delle persone rivelando dati riconducibili a singoli individui, è necessario "perturbare" certi dati arrotondandoli rispetto ad una certa base di riferimento. Così facendo, tuttavia, si va incontro alle difficoltà che hai visto anche tu.
- E quindi gli statistici hanno chiesto aiuto ai matematici.
- Sì, ma soprattutto agli informatici, perché le tecniche di risoluzione del CRP sono raffinati metodi euristici nei quali i ricercatori di informatica hanno dato il meglio di sè.
- Meno male. Mi sa però che continuerò a registrare le mie spese al centesimo.
- Forse ti conviene. D'altra parte, così gli arrotondamenti quadrano sempre!
Iscriviti a:
Commenti sul post (Atom)
L'ultimo post di Mr. Palomar, anzi no
Sono trascorsi quasi 14 anni da quel Capodanno del 2011, quando Mr. Palomar vide la luce. Da allora, molta acqua è passata sotto i ponti, c...
Il problema di arrotondare importi di euro (alle unità, alle migliaia, ai milioni) mi è dolorosamente famigliare. Soprattutto quando i subtotali devono poi essere ripartiti in una molteplicità di categorie diverse, e poi riconciliati. Molto interessante scoprire che esiste una soluzione, anche se probabilmente fuori luogo in un bilancio di azienda...
RispondiEliminaChe noiosa fine per il quaderno a quadretti di Mr. P :-)
ps. typo: "90 + 87 + 7 + 44 non fa 277, ma 278".